A reversible code over GF(q)

نویسندگان

  • Sunil Kumar Muttoo
  • Shankar Lal
چکیده

An (n, k) linear code C of length n over GF(q) = Fq, a Galios field of order q, where q is a prime, is a fc-dimensional linear subspace of F"q, where F"q denotes the space of all n-tuples over GF(q). A generator matrix G of this code is a k x n matrix whose rows form a basis of C. The parity-check matrix H of this code is an(n — fc) x n matrix such that Hv = 0 for all vectors veC. The row space of (n k) x n matrix H is an (n, n — fc) linear code C called dual code of C. The Hamming weight of a vector is the number of non-zero elements in it. A code word in C consists of some fc symbols as message or information symbols and the remaining symbols as check-digits [2]. A class of codes called 'reversible codes' introduced by Massey [3] is defined as follows:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

Another Generalization of the Reed-Muller Codes

The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...

متن کامل

Another q-Polynomial Approach to Cyclic Codes

c0 + c1x+ c2x 2 + · · ·+ cn−1x n−1 ∈ GF(q)[x]/(x − 1), any code C of length n over GF(q) corresponds to a subset of the quotient ring GF(q)[x]/(xn− 1). A linear code C is cyclic if and only if the corresponding subset in GF(q)[x]/(xn − 1) is an ideal of the ring GF(q)[x]/(xn − 1). It is well known that every ideal of GF(q)[x]/(xn−1) is principal. Let C = 〈g(x)〉 be a cyclic code, where g(x) is m...

متن کامل

New linear codes over GF(8)1

Let [n, k, d]q-code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the most important problems in coding theory is to construct codes with best possible minimum distances. Recently, the class of quasi-cyclic (QC) codes has been proven to contain many such codes. In this paper, thirty two codes over GF (8) are constructed (among them one optimal code...

متن کامل

New array codes for multiple phased burst correction

Abstmct-A new optimal family of array codes over GF(q) for correcting multiple phased burst errors and erasures, where each phased burst corresponds to an erroneous or erased column in a code array, is presented. As for erasures, these array codes have an efficient decoding algorithm which avoids multiplications (or divisions) over extension fields, replacing these operations with cyclic shifts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1986